High-quality permanent draft genome sequence of the Bradyrhizobium elkanii type strain USDA 76T, isolated from Glycine max (L.) Merr
نویسندگان
چکیده
Bradyrhizobium elkanii USDA 76T (INSCD = ARAG00000000), the type strain for Bradyrhizobium elkanii, is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing root nodule of Glycine max (L. Merr) grown in the USA. Because of its significance as a microsymbiont of this economically important legume, B. elkanii USDA 76T was selected as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria sequencing project. Here the symbiotic abilities of B. elkanii USDA 76T are described, together with its genome sequence information and annotation. The 9,484,767 bp high-quality draft genome is arranged in 2 scaffolds of 25 contigs, containing 9060 protein-coding genes and 91 RNA-only encoding genes. The B. elkanii USDA 76T genome contains a low GC content region with symbiotic nod and fix genes, indicating the presence of a symbiotic island integration. A comparison of five B. elkanii genomes that formed a clique revealed that 356 of the 9060 protein coding genes of USDA 76T were unique, including 22 genes of an intact resident prophage. A conserved set of 7556 genes were also identified for this species, including genes encoding a general secretion pathway as well as type II, III, IV and VI secretion system proteins. The type III secretion system has previously been characterized as a host determinant for Rj and/or rj soybean cultivars. Here we show that the USDA 76T genome contains genes encoding all the type III secretion system components, including a translocon complex protein NopX required for the introduction of effector proteins into host cells. While many bradyrhizobial strains are unable to nodulate the soybean cultivar Clark (rj1), USDA 76T was able to elicit nodules on Clark (rj1), although in reduced numbers, when plants were grown in Leonard jars containing sand or vermiculite. In these conditions, we postulate that the presence of NopX allows USDA 76T to introduce various effector molecules into this host to enable nodulation.
منابع مشابه
Bradyrhizobium elkanii nod regulon: insights through genomic analysis
A successful symbiotic relationship between soybean [Glycine max (L.) Merr.] and Bradyrhizobium species requires expression of the bacterial structural nod genes that encode for the synthesis of lipochitooligosaccharide nodulation signal molecules, known as Nod factors (NFs). Bradyrhizobium diazoefficiens USDA 110 possesses a wide nodulation gene repertoire that allows NF assembly and modificat...
متن کاملGenome Sequence of Bradyrhizobium pachyrhizi Strain PAC48T, a Nitrogen-Fixing Symbiont of Pachyrhizus erosus (L.) Urb.
Bradyrhizobium pachyrhizi PAC48(T) has been isolated from a jicama nodule in Costa Rica. The draft genome indicates high similarity with that of Bradyrhizobium elkanii. Several coding sequences (CDSs) of the stress response might help in survival in the tropics. PAC48(T) carries nodD1 and nodK, similar to Bradyrhizobium (Parasponia) ANU 289 and a particular nodD2 gene.
متن کاملDraft Genome Sequence of Bradyrhizobium japonicum Is-1, Which Is Incompatible with Rj2 Genotype Soybeans
We report the draft genome sequence of Bradyrhizobium japonicum Is-1, which is incompatible with Rj2 genotype soybeans. The estimated genome size of this strain is 8.9 Mb. Genome sequence information of this strain will help to identify a causal gene for this incompatibility.
متن کاملDraft genome sequence of Bradyrhizobium sp. strain BR 3262, an effective microsymbiont recommended for cowpea inoculation in Brazil
The strain BR 3262 was isolated from nodule of cowpea (Vigna unguiculata L. Walp) growing in soil of the Atlantic Forest area in Brazil and it is reported as an efficient nitrogen fixing bacterium associated to cowpea. Firstly, this strain was assigned as Bradyrhizobium elkanii, however, recently a more detailed genetic and molecular characterization has indicated it could be a Bradyrhizobium p...
متن کاملHigh-quality permanent draft genome sequence of Bradyrhizobium sp. strain WSM1743 - an effective microsymbiont of an Indigofera sp. growing in Australia
Bradyrhizobium sp. strain WSM1743 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of an Indigofera sp. WSM1743 was isolated from a nodule recovered from the roots of an Indigofera sp. growing 20 km north of Carnarvon in Australia. It is slow growing, tolerates up to 1 % NaCl and is capable of growth at 37 °C. Here we d...
متن کامل